

# GEOGRIDS

### REINFORCEMENT AND STABILIZIATION OF ATHLETIC FIELDS

ESS offers a wide selection of geosynthetic geogrids that are engineered to improve the performance of weak subgrades in athletic fields. While reinforcing and increasing the stiffness at the base the synthetic or natural sport field, the geogrid openings interact with base materials, confining them and preventing lateral dispersion and improving structural performance of the subgrade. We have the products and expertise to protect your base layer and drainage systems, both natural or synthetic for settlement failure. Whether a full field installation like the Baltimore Ravens Stadium or countless perimeter trench reinforcement applications, ESS has the geogrid to meet your needs.









Perimeter trench placed under the Sport Drain Max. Schertz Cibolo ISD. TX.

Compacting rounded, clean drainage stone in the perimeter drainage ditch is a challenge to most contractors on synthetic fields. The potential for the stone to displace under load causes the lines to move, especially during the infill process. By placing a layer of geogrid on top of the perimeter trench just below the turf or synthetic aggregate system helps to reduce this potential problem. The open area of the geogrid allows for the stone to interlock and resist lateral displacement through confinement. The stiff, rigid geogrid, through this lateral constraint mechanism, provides a nice, stable platform for the overlying layers without reducing the drainage characteristics of the aggregate.

#### **Product Advantages:**

Soil stabilization and Base Reinforcement Increased separation between the subgrade and fill material Prevent lateral dispersion of base materials Improves structural performance

For more information, please contact us

410.878.6341

info@engineeredsportfield.com www.engineeredsportfield.com



M&T Bank Stadium home of the Baltimore Ravens



MS<sup>™</sup> 220 B is composed of two layers of high strength extruded biaxial oriented polypropylene geogrids. The random aperture geometry is designed to accommodate a variety of fill materials. The many tensile elements and multiple layers of the geogrid enhance the soil/geogrid interaction. MS<sup>™</sup> 220 B geogrid greatly improves the geogrid interlocking capacity, distributes applied loads, and prevents localized shear failure.

## MS 220 B Data Sheet

| GEOSYNTHETIC PROPERTY                                   | TEST        | UNIT  | MS™ 220B      |                 |
|---------------------------------------------------------|-------------|-------|---------------|-----------------|
|                                                         | METHOD      |       | MD            | TD              |
| Material Characteristics                                |             |       |               |                 |
| Polymer Type                                            | -           | -     | Polypropylene |                 |
| PH Resistance                                           | -           | -     | 2 – 13        |                 |
| Carbon Black Content                                    | ASTM 4218   | %     | 0.5           |                 |
| Strength and Load Capacity                              |             |       |               |                 |
| Peak Tensile Strength                                   | ASTM D6637  | lb/ft | 925           |                 |
| Tensile Strength @ 2% Strain                            | ASTM D6637  | lb/ft | 301           | 1,400           |
| Tensile Strength @ 5% Strain                            | ASTM D6637  | lb/ft | 616           | 450             |
| Initial Modulus                                         | ASTM D6637  | lb/ft | 17,140        | 920             |
| Tensile Modulus @ 2% Strain                             | ASTM D6637  | lb/ft | 15,050        | 27,420          |
| Tensile Modulus @ 5% Strain                             | ASTM D6637  | lb/ft | 12,320        | 22,500          |
| Structural Integrity                                    |             |       |               | 18,400          |
| Flexural Rigidity                                       | ASTM D 1388 | mg-cm | 250,000       |                 |
| Junction Strength                                       | GRI-GG2     | lb/ft | 860           | 250,000         |
| Performance Characteristics                             |             |       |               | 1315            |
| Maximum Pullout Resistance (Coefficient of Interaction) |             |       |               |                 |
| @ 205 psf                                               |             | lb/ft | -             |                 |
| @ 410 psf                                               |             | lb/ft | -             | 650<br>(1.05)   |
| Maximum Rut Depth<br>(TEAL = 40,000 cycle)              | -           | in.   | 0.827         | 1,295<br>(1.03) |
| Durability                                              |             |       |               |                 |
| Resistance to Installation Damage                       | ASTM D 5818 | %     | >90/>90/90    |                 |
|                                                         |             |       |               |                 |

**Exclusively Distributed by:** 

#### **Engineered Sportfield Solutions, LLC**

info@engineeredsportfield.com 4223 Rock Run Road, Havre de Grace, MD 21078 Phone: 410-878-6341 Fax: 410-734-4129

SEPTEMBER 2010

